Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner. Facebook Messenger An icon of the facebook messenger app logo. Facebook An icon of a facebook f logo. Facebook Messenger An icon of the Twitter app logo. LinkedIn An icon of the LinkedIn logo. WhatsApp Messenger An icon of the Whatsapp messenger app logo. Email An icon of an mail envelope. Copy link A decentered black square over a white square.

‘Mini organs’ grown from stem cells taken in late pregnancy

‘Mini organs’ grown from stem cells taken in late pregnancy – study (Giuseppe Cala/Paolo De Coppi/Mattia Gerli/UCL/PA)
‘Mini organs’ grown from stem cells taken in late pregnancy – study (Giuseppe Cala/Paolo De Coppi/Mattia Gerli/UCL/PA)

“Mini organs” have been grown for the first time using human stem cells taken during pregnancy, potentially leading to advances in prenatal medicine.

The study means human development can be observed in late pregnancy for the first time, raising the possibility of monitoring and treating congenital conditions before birth.

The research, published in Nature Medicine, sets out that complex cell models, called organoids, have been grown, and these “mini-organs” retain the baby’s biological information.

Organoids enable scientists to study how organs function both when they are healthy and when impacted by disease.

The researchers say the mini organs will facilitate monitoring of foetal development in late pregnancy, modelling of disease progression and testing of new treatments for diseases such as congenital diaphragmatic hernia (CDH) – a defect in an unborn baby’s diaphragm.

Dr Mattia Gerli, first author of the study at UCL Surgery and Interventional Science, said: “The organoids we created from amniotic fluid cells exhibit many of the functions of the tissues they represent, including gene and protein expression.

“They will allow us to study what is happening during development in both health and disease, which is something that hadn’t been possible before.

“We know so little about late human pregnancy, so it’s incredibly exciting to open up new areas of prenatal medicine.”

Until now organoids have been derived from adult stem cells or post-termination foetal tissue.

There are also regulations that restrict when foetal samples can be obtained.

In the UK this can be done up to 22 post-conception weeks, the legal limit for the termination of a pregnancy, but in countries like the US foetal sampling is illegal.

The regulations mean studying normal human development past 22 weeks has been limited, as well as for congenital diseases at a point when there may still be an opportunity to treat them.

To overcome these issues, researchers at UCL and Great Ormond Street Hospital (GOSH) extracted stem cells that had passed into the amniotic fluid, which surrounds the child in the womb and protects it during pregnancy.

Because the child is not touched during the collection process, sampling restrictions can be overcome and the cells carry the same biological information as the child.

The researchers took live cells from 12 pregnancies – between the 16th week and the 34th week – as part of routine diagnostic testing.

They then identified which tissues the stem cells came from.

Stem cells from the lungs, kidneys and intestine were successfully extracted, and used to grow organoids that had functional features of these tissue types.

The team worked with researchers at KU Leuven in Belgium to study the development of babies with CDH, a condition where a hole in the diaphragm means organs like the intestine and liver get displaced into the chest, putting pressure on the lungs and hindering healthy growth.

Mini organs from babies with CDH both pre- and post-treatment were compared to organoids from healthy babies to study the biological characteristics of each group.

The study found significant developmental differences between healthy and pre-treatment CDH organoids.

However, the organoids in the post-treatment group were much closer to healthy ones, providing an estimate of the treatment’s effectiveness at a cellular level.

NIHR Professor Paolo de Coppi, senior author of the study from UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, said: “This is the first time that we’ve been able to make a functional assessment of a child’s congenital condition before birth, which is a huge step forward for prenatal medicine.

“Diagnosis is normally based on imaging such as ultrasound or MRI and genetic analyses.

“When we meet families with a prenatal diagnosis, we’re often unable to tell them much about the outcome because each case is different.

“We’re not claiming that we can do that just yet, but the ability to study functional prenatal organoids is the first step towards being able to offer a more detailed prognosis and, hopefully, provide more effective treatments in future.”

The researchers say that while they have not yet studied the method in relation to other conditions, it is possible they could look at other conditions that affect the lungs – like cystic fibrosis, kidneys and intestine.

Supported by the National Institute for Health and Care Research (NIHR) and Wellcome, the findings are published in Nature Medicine.