Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner.

Giant impact could have formed the moon more rapidly, new simulations indicate

A giant impact could have formed the moon more rapidly than previously thought, new simulations indicate (Jacob Kegerreis/Durham University/PA)
A giant impact could have formed the moon more rapidly than previously thought, new simulations indicate (Jacob Kegerreis/Durham University/PA)

Scientists have used the most detailed supercomputer simulations yet to reveal an alternative explanation for the moon’s origin.

The study suggests a giant impact could have formed a moon-like body more rapidly, placing it into orbit around the Earth.

In their search for scenarios that could explain the Earth-moon system we know today, researchers at Durham University’s Institute for Computational Cosmology, simulated hundreds of different impacts using the AMD powered supercomputer.

They varied the angle and speed of the collision as well as the masses and spins of the two colliding bodies in a bid to create different scenarios.

The calculations were performed using the SWIFT open-source simulation code, run on the DiRAC Memory Intensive service (Cosma), hosted by the university on behalf of the DiRAC High-Performance Computing facility.

The extra computational power revealed that lower-resolution simulations can miss out on important aspects of large-scale collisions.

Only the high-resolution simulations produced the moon-like satellite, and the extra detail showed how its outer layers were richer in material originating from the Earth.

According to the researchers, if much of the moon formed immediately after a giant impact, this could also mean less became molten during formation than in the standard theories where the moon grew within a debris disk around Earth.

The researchers suggest that depending in the details of the subsequent solidification, these theories should predict different internal structures for the moon.

Co-author of the study, Vincent Eke, said: “This formation route could help explain the similarity in isotopic composition between the lunar rocks returned by the Apollo astronauts and Earth’s mantle.

“There may also be observable consequences for the thickness of the lunar crust, which would allow us to pin down further the type of collision that took place.”

Most theories see the moon created by gradual accumulation of debris (Alamy/PA)

Researchers found that even when a satellite passes so close to the Earth that it might be expected to be torn apart by the “tidal forces” from Earth’s gravity, it can not only survive but also be pushed onto a wider orbit, safe from future destruction.

Lead researcher of the study, Jacob Kegerreis, said: “This opens up a whole new range of possible starting places for the moon’s evolution.

“We went into this project not knowing exactly what the outcomes of these very high-resolution simulations would be.

“So, on top of the big eye-opener that standard resolutions can give you wrong answers, it was extra exciting that the new results could include a tantalisingly moon-like satellite in orbit.”

It is thought the moon formed following a collision 4.5 billion years ago between the young Earth and a Mars-sized object, called Theia.

Most theories see the moon created by gradual accumulation of the debris from this impact.

However, this has been challenged by measurements of lunar rocks showing their composition is like that of the Earth’s mantle, while the impact produced debris that comes mostly from Theia.

Experts say upcoming lunar missions should reveal new clues about what kind of giant impact led to the moon, which in turn will tell us about the history of Earth itself.

The research, published in the Astrophysical Journal Letters, was partly supported by a DiRAC Director’s Discretionary Time award and a Science and Technology Facilities Council (STFC) grant.