Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner. Facebook Messenger An icon of the facebook messenger app logo. Facebook An icon of a facebook f logo. Facebook Messenger An icon of the Twitter app logo. LinkedIn An icon of the LinkedIn logo. WhatsApp Messenger An icon of the Whatsapp messenger app logo. Email An icon of an mail envelope. Copy link A decentered black square over a white square.

England’s only bottlenose dolphin pod at risk of extinction, says study

Bottlenose dolphins in the English Channel (Marine Discovery/University of Plymouth)
Bottlenose dolphins in the English Channel (Marine Discovery/University of Plymouth)

England’s only resident population of bottlenose dolphins is under serious threat from a combination of human activity, environmental pollution and difficulties in rearing young that survive into adulthood, according to new research.

For almost a decade, scientists and conservation groups based along the English Channel coast have been working together with citizen scientists to monitor the movements and distribution of this population.

This has enabled them to establish the most detailed picture yet of this population, their movements and social interactions, and the challenges they face on a daily basis.

A bottlenose dolphin at St Ives Bay (Dan Murphy/University of Plymouth)
A bottlenose dolphin at St Ives Bay (Dan Murphy/University of Plymouth)

Researchers estimate the pod currently consists of just 48 dolphins, which is less than half the size of most coastal bottlenose dolphin populations, and around 10 times smaller than a pod known to inhabit the Channel coast of France.

Their fight for survival is made even more challenging by the fact they inhabit some of the busiest shipping lanes in the world and also coastal waters known to suffer from repeated and prolonged spells of pollution and fishing pressure.

These findings have led the researchers to call for urgent measures to protect the population and its habitats, or risk the possibility that this group of animals may not survive.

The research is being led by Cornwall Wildlife Trust and scientists at the University of Plymouth to collate and analyse sightings data, through the South Coast Bottlenose Dolphin Consortium.

The study is the result of work by former marine biology research student Shauna Corr, and former marine conservation students Rebecca Dudley and Saskia Duncan, supervised by Dr Simon Ingram.

Dr Ingram, who leads the bottlenose dolphin research project and is senior author on the study, said: “Bottlenose dolphins are highly intelligent and social animals with complex cultures.

“They are known to have some of the closest interactions with humans of any species on the planet, but because they live in the sea, and not on land, they go unseen by most people and we fail to appreciate quite how amazing yet vulnerable they are.

“This population lives along one of the most developed and busy coastlines in the world which poses a clear threat to their conservation.

“To see the south coast population decline to extinction would be a local tragedy for the dolphins and for us.”

This population of bottlenose dolphins was first documented by scientists in the mid-1990s and became the subject of detailed scientific analysis again in 2017 due to concerns raised by Cornwall Wildlife Trust about their plight and vulnerability to human impacts.

Individual bottlenose dolphins can be identified from their unique fin markings enabling scientists to build up a catalogue of known dolphins which, through repeated sightings, helped the students to track the movements of individual animals over several years.

The repeat sightings revealed that dolphins from this pod travel the coast between North Cornwall and East Sussex, with some individuals known to have travelled up to 760km between sightings.

The population appears to be isolated with individuals known to socialise within their own pod close to the shore but not with others from other populations normally found in the open sea.

The study’s authors hope this information will be used by statutory marine conservation organisations to provide better protection for this highly vulnerable population and to take appropriate measures in order for the pod to survive.

– The study, Using citizen science data to assess the vulnerability of bottlenose dolphins to human impacts along England’s south coast, is published in the journal Animal Conservation.